

For Vyntus[™] CPX and SentrySuite[™] Software

In our SentrySuiteTM – Cardiopulmonary Exercise Testing (CPET)-program, three different dead-space calculations: VD_f , VD_c and VD_e are available. These are the dead-spaces (normally expressed in mL) and calculated according to different publications from the literature. The relative dead-spaces VD_x/VT are often also reported as VD_x/VE . The meaning of both is the same; both are expressing the relative dead-space ventilation (either per breath or per minute ventilation).

Note 1

Per customer requests, we implemented all three published values [1,2,3] in our SentrySuite Software. Nevertheless Lewis [2] and Wasserman [1] recommend not to use VD_e or VD_c but only use the VD_f and VD_f/VT-values: In case of inhomogeneity or gas exchange problems, VD_c and VD_e provide wrong false values (they seem to be more or less acceptable for healthy subjects (with a very low physiological dead-space), but show unreliable "healthy" values in different diseases due to increased alveolar deadspace).

Note 2

During CPET, the subject is connected via a mouthpiece or a face mask with the volume sensor of the system. Therefore, the determined dead-space VD_{determined} will be the sum of

 $VD_{determined} = VD_{patient} + VD_{system}$

with VD_{system} = VD_{mask} + VD_{volume-sensor}

and the patient's dead-space must be corrected by the system dead-space:

VD_{patient} = VD_{determined} - VD_{mask} - VD_{volume-sensor}

Therefore, it is recommended to select the used mask (or mouthpiece) in SentrySuite, so that the system can subtract the correct VD_{system} from the calculated VD_{determined} (the VD_{volume-sensor} = 30 mL is automatically considered as well).

Note 3

Please consider, that the following parameters (and only these) are affected by the system dead-space VD_{system} and may be not correct, if the VD_{system} is not selected properly:

- The dead spaces: $\mathsf{VD}_\mathsf{f}, \mathsf{VD}_\mathsf{e}, \mathsf{VD}_\mathsf{c}$
- The relative dead-spaces: VD_f/VT, VD_e/VT, VD_c/VT
- And the ventilatory equivalents: EqO₂, EqCO₂

Calculation formulas:

1. VD_f / VT:

The functional (also named as physiological) dead-space can be calculated according to Bohr's formula out of arterial CO₂ (PaCO₂) and mixed expired CO₂ (PECO₂):

$VD_{f}/VT = ((PaCO_{2} - PECO_{2}) / PaCO_{2} - VD_{s}/VT) * 100$ [%	VT) * 100 [%]
---	---------------

with		
PaCO ₂ :	arterial CO ₂ -pressure	[mmHg]
PECO ₂	= FECO ₂ * (BP-47) / 100	[mmHg]
FECO2:	mixed expired CO2-concentration	[%]
BF:	breathing frequency	[1/min]
BP:	bar pressure	[mmHg]
VT:	tidal volume	[L]
VDs:	system dead-space (mask, mouthpiece etc.)	[L]

2. VD_e / VT:

As $PaCO_2$ is in healthy subjects - due to low alveolar dead-space - very close to end-tidal CO_2 (PETCO₂), the "end-tidal" (or estimated) dead-space may be calculated by using PETCO₂ instead of $PaCO_2$

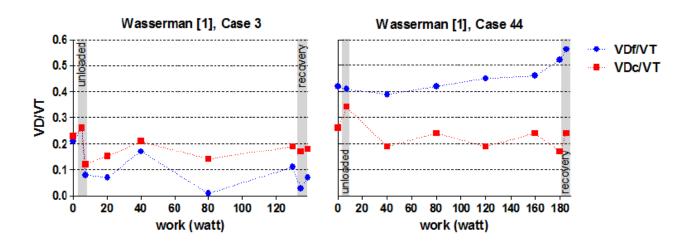
VD _e /VT = ((PETCC	[%]	
with		
PECO ₂	= FECO ₂ * (BP-47) / 100	[mmHg]
PETCO ₂	= FETCO ₂ * (BP-47) / 100	[mmHg]
FECO ₂ :	mixed expired CO ₂ -concentration	[%]
BF:	breathing frequency	[1/min]
BP:	bar pressure	[mmHg]
VT:	tidal volume	[L]
VD _s :	system dead-space (mask, mouthpiece etc.)	[L]

3. VD_c / VT:

As the end-tidal values for CO_2 depend on the tidal volume (e.g. underestimated at low tidal volumes and overestimated at high VT), Jones [3] suggests to calculate the arterial CO_2 (PaCO2c) from end-tidal CO_2 and tidal volume and use this value for calculating the dead-space:

VD _c /VT = ((PaCO _{2c}	[%]	
with		
PaCO _{2c}	= 5.5 + 0.90 x PETCO ₂ – 2.1 x VT	[mmHg]
PECO ₂ :	= FECO ₂ * (BP-47) / 100	[mmHg]
PETCO ₂ :	= FETCO ₂ * (BP-47) / 100	[mmHg]
FECO ₂ :	mixed expired CO ₂ -concentration	[%]
BF:	breathing frequency	[1/min]
BP:	bar pressure	[mmHg]
VT:	tidal volume	[L]
VDs:	system dead-space (mask, mouthpiece etc.)	[L]

System dead-spaces (VD_s):


The system dead-space (VD_s) depends on the different parts (mask, mouthpiece, saliva pump, etc.) used during the measurement. The dead space of the face masks only can be estimated, as it depends both on the shape of the face (size of the nose) as well as from the efficiency of the equilibration of the expired gas in the mask itself. The following table gives an overview about the VD_s used in SentrySuite: (Recommended VD_s \approx Total VD_s * estimated effective [%] + VD_{TV-adaptor})

Mask	Article no.	Total VDs (mL) (Manufac.)	estimated effective (%)	estimated effective (mL)	TV- Adapter (Vyntus™ CPX)	Total Mask (Vyntus CPX)	Recomm. Total for Vyntus CPX
Combitox mask	982006	115	75%	86	5	91	90
8900 Series HR Pediatric large	982078	31,5	95%	30	5	35	35
8900 Series HR Adult small	982002	40,2	95%	38	5	43	40
8900 Series HR Adult medium	982149	46,7	95%	44	5	49	45
8900 Series HR Adult large	982003	49,1	95%	47	5	52	50
7400 Series HR Petite (P)	982167	53	90%	48	5	53	50
7400 Series HR Extra small	982163	62	90%	56	5	61	60
7400 Series HR Small	982164	73	90%	66	5	71	70
7400 Series HR Medium	982165	97	90%	87	5	92	90
7400 Series HR Large	982166	114	90%	103	5	108	105
7450 V2 Series HR Petite (P)	V-982188	78	85%	66	5	71	70
7450 V2 Series HR Extra small	V-982187	88	85%	75	5	80	80
7450 V2 Series HR Small (S)	V-982184	99	85%	84	5	89	90
7450 V2 Series HR Medium (M)	V-982185	125	85%	106	5	111	110
7450 V2 Series HR Large	V-982186	143	85%	122	5	127	125
6450 V2 Series HR Petite (P)	V-982183	78	85%	66	5	71	70
6450 V2 Series HR Extra small	V-982182	88	85%	75	5	80	80
6450 V2 Series HR Small (S)	V-982177	99	85%	84	5	89	90
6450 V2 Series HR Medium (M)	V-982178	125	85%	106	5	111	110
6450 V2 Series HR Large (L)	V-982179	143	85%	122	5	127	125
Note:	Actual						
	Obsolete						

Comparing VD_f and VD_c:

In addition, comparing the dead spaces with blood gas calculations (VD_f), it's even more obvious that VD_c does not represent the correct $VD_{patient}$:

In a healthy subject (left, Case 3), VD_c/VT starts at normal values, but is overestimating at higher load, while in diseases (right, Case 44) VD_c/VT is strongly underestimating the patient's dead-space.

Literature

- (1) Wasserman K., Hansen J.E., Sue D.Y., Stringer W.W., Sietsema K.E., Sun X-G., Whipp B.J.
 Principles of Exercise Testing and Interpretation 5th edition (2012)
 Lippincott Williams & Wilkins
 ISBN-13: 978-1-60913-899-8
- (2) Lewis D.A., Sietsema K.E., Casaburi R., Sue D.Y.
 Inaccuracy of Noninvasive Estimates of VD/VT in Clinical Exercise Testing Chest 5_106 (1994)
- (3) Jones N.L.
 Clinical Exercise Testing
 4th Edition, W.B. Saunders Company (1997)
 ISBN: 0-7216-6511-x

GLOBAL HEADQUARTERS

Vyaire Medical, Inc. 26125 North Riverwoods Blvd Mettawa, IL 60045 USA Vyaire Medical GmbH Leibnizstr. 7 97204 Hoechberg Germany

AUSTRALIAN SPONSOR

Vyaire Medical Pty Ltd Suite 5.03, Building C 11 Talavera Road Macquarie Park, NSW 2113

For global distribution.

© 2022 Vyaire. Vyaire and the Vyaire logo are trademarks or registered trademarks of Vyaire Medical, Inc., or one of its affiliates. Vyaire's Medical devices are class I & Ila according to Medical Devices Directive 93/42/EEC or Medical Device Regulation EU 2017/745 as indicated on each declaration of conformity. Please read the complete Instructions For Use that come with the devices or follow the instructions on the product labeling. VYR-GBL-2100307

